Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904978

RESUMO

Can ordinary Micro-Electro-Mechanical-Systems (MEMS) microphones be used for near-ultrasonic applications? Manufacturers often provide little information about the signal-to-noise ratio (SNR) in the ultrasound (US) range and, if they do, the data are often determined in a manufacturer-specific manner and are generally not comparable. Here, four different air-based microphones from three different manufacturers are compared with respect to their transfer functions and noise floor. The deconvolution of an exponential sweep and a traditional calculation of the SNR are used. The equipment and methods used are specified, which makes it easy to repeat or expand the investigation. The SNR of MEMS microphones in the near US range is mainly affected by resonance effects. These can be matched for applications with low-level signals and background noise such that the highest possible SNR can be achieved. Two MEMS microphones from Knowles performed best for the frequency range from 20 to 70 kHz; above 70 kHz, an Infineon model delivered the best performance.

2.
Front Chem ; 11: 1328882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179240

RESUMO

Photoacoustic spectroscopy (PAS) is well known for the detection of short-chain hydrocarbons, such as methane, ethane and propane, in the ppm (parts per million) or ppb (parts per billion) range. However, in the production process of natural gas and its combustion in gas-fired devices the composition, especially the concentrations of the main alkanes, plays a decisive role. Gas chromatography (GC) is considered the gold standard for natural gas analysis. We present a method to analyze natural gas samples by PAS. Furthermore, we describe a method to prepare storage gas samples, which are usually under atmospheric pressure, for PAS analysis. All measurements are validated by means of GC. The investigation allows conclusions to be drawn to what extent PAS is suitable for the investigation of natural gas samples.

3.
Molecules ; 25(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403410

RESUMO

We report, to our knowledge, the first optical detection scheme for short-chained hydrocarbon isotopologues. The sensor system is based on photoacoustic spectroscopy (PAS). Two continuous wave, thermoelectrically cooled, distributed feedback interband cascade lasers (DFB-ICLs) with emission wavelengths around 3.33 and 3.38 µm, respectively, served as light sources. The investigations comprised the main stable carbon isotopologues of methane (12CH4, 13CH4), ethane (12CH3-12CH3, 13CH3-12CH3, 13CH3-13CH3), and propane (12CH3-12CH2-12CH3, 13CH3-12CH2-12CH3). They were selected because of their importance for numerous applications from climate and planetary research to natural gas exploration. Multiple measurements of single components in nitrogen and synthetic mixtures were conducted at room temperature and atmospheric pressure. Depending on the investigated hydrocarbon isotopologue, detection limits ranging from 0.043 ppmv to 3.4 ppmv were achieved. For a selective concentration determination, multivariate analysis (MVA) was applied. Partial least-squares regression (PLSR) was used to calculate concentrations from the PA spectra. The implementation of MVA has shown that the PA setup in principle works reliably and that the selective concentration determination of short-chained hydrocarbon isotopologues is possible.


Assuntos
Hidrocarbonetos/análise , Isótopos/análise , Análise Multivariada , Gás Natural/análise , Técnicas Fotoacústicas/métodos , Análise Espectral/métodos , Pressão Atmosférica , Etano/análise , Hidrocarbonetos/química , Lasers , Análise dos Mínimos Quadrados , Metano/análise , Nitrogênio/análise , Técnicas Fotoacústicas/instrumentação , Propano/análise , Análise Espectral/instrumentação , Temperatura
4.
Photoacoustics ; 18: 100161, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32021797

RESUMO

Photoacoustic spectroscopy employs acoustic resonators for signal amplification. Resonators are usually closed, however, in some applications, open resonators are preferred. The opening deteriorates the photoacoustic signal hence reducing the sensitivity of the photoacoustic measurement. We present two new approaches for simulating the photoacoustic signal in open resonators using finite element modelling. The approaches are based on the amplitude mode expansion model and the viscothermal model with the opening modelled using perfectly matched layers and the boundary element method respectively. Additionally, the performance of the viscothermal model using perfectly matched layers for simulating open resonators is extended to the ultrasound region. The simulation results are verified by comparing them to photoacoustic measurements. The approaches provide an accurate basis for designing and optimizing open resonators with high sensitivity.

5.
Sensors (Basel) ; 19(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261919

RESUMO

T-cell resonators have been used lately for non-invasive blood glucose measurements for photoacoustic spectroscopy on skin samples. A resonator has a significant role in determining the strength of the measured signal and the overall sensitivity of the sensor. Here we present results of the measurement of the photoacoustic signal of such a T-cell resonator. The signal is also modelled using the amplitude mode expansion method, which is based on eigenmode expansion and the introduction of losses in the form of loss factors. The measurement reproduced almost all the calculated resonances from the numerical models with fairly good agreement. The cause of the differences between the measured and the simulated resonances are explained. In addition, the amplitude mode expansion simulation model is established as a faster and computationally less demanding photoacoustic simulation alternative to the viscothermal model. The resonance frequencies from the two models differ by less than 1.8%. It is noted that the relative height of the amplitudes from the two models depends on the location of the antinodes within the different parts of the resonator. The amplitude mode expansion model provides a quick simulation tool for the optimization and design of macro resonators.


Assuntos
Técnicas Biossensoriais , Glucose/isolamento & purificação , Técnicas Fotoacústicas , Linfócitos T/metabolismo , Simulação por Computador , Glucose/metabolismo , Humanos , Sistemas de Infusão de Insulina , Linfócitos T/química
6.
Sensors (Basel) ; 18(11)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445783

RESUMO

We evaluate the spectral resolution and the detection thresholds achievable for a photoacoustic spectroscopy (PAS) system in the broadband infrared wavelength region 3270 n m ≲ λ ≲ 3530 n m driven by a continuous wave optical parametric oscillator (OPO) with P ¯ ≈ 1.26 W . The absorption spectra, I PAS ( λ i ) , for diluted propane, ethane and methane test gases at low concentrations ( c ∼ 100 ppm ) were measured for ∼1350 discrete wavelengths λ i . The I PAS ( λ i ) spectra were then compared to the high resolution cross section data, σ FTIR , obtained by Fourier Transform Infrared Spectroscopy published in the HITRAN database. Deviations of 7.1(6)% for propane, 8.7(11)% for ethane and 15.0(14)% for methane with regard to the average uncertainty between I PAS ( λ i ) and the expected reference values based on σ FTIR were recorded. The characteristic absorption wavelengths λ res can be resolved with an average resolution of δ λ res ∼ 0.08 nm . Detection limits range between 7.1 ppb (ethane) to 13.6 ppb (methane). In an additional step, EUREQA, an artificial intelligence (AI) program, was successfully applied to deconvolute simulated PAS spectra of mixed gas samples at low limits of detection. The results justify a further development of PAS technology to support e.g., biomedical research.

7.
Sensors (Basel) ; 18(5)2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762468

RESUMO

We applied a multivariate analysis (MVA) to spectroscopic data of gas mixtures in the mid-IR in order to calculate the concentrations of the single components which exhibit strongly overlapping absorption spectra. This is a common challenge in broadband spectroscopy. Photoacoustic (PA) measurements of different volatile organic compounds (VOCs) in the wavelength region of 3250 nm to 3550 nm served as the exemplary detection technique. Partial least squares regression (PLS) was used to calculate concentrations from the PA spectra. After calibration, the PLS model was able to determine concentrations of single VOCs with a relative accuracy of 2.60%.

8.
Sensors (Basel) ; 17(1)2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28117732

RESUMO

With 1.6 million deaths per year, lung cancer is one of the leading causes of death worldwide. One reason for this high number is the absence of a preventive medical examination method. Many diagnoses occur in a late cancer stage with a low survival rate. An early detection could significantly decrease the mortality. In recent decades, certain substances in human breath have been linked to certain diseases. Different studies show that it is possible to distinguish between lung cancer patients and a healthy control group by analyzing the volatile organic compounds (VOCs) in their breath. We developed a sensor based on photoacoustic spectroscopy for six of the most relevant VOCs linked to lung cancer. As a radiation source, the sensor uses an optical-parametric oscillator (OPO) in a wavelength region from 3.2 µm to 3.5 µm. The limits of detection for a single substance range between 5 ppb and 142 ppb. We also measured high resolution absorption spectra of the biomarkers compared to the data currently available from the National Institute of Standards and Technology (NIST) database, which is the basis of any selective spectroscopic detection. Future lung cancer screening devices could be based on the further development of this sensor.


Assuntos
Análise Espectral , Testes Respiratórios , Detecção Precoce de Câncer , Humanos , Neoplasias Pulmonares , Compostos Orgânicos Voláteis
9.
Clin Chim Acta ; 459: 5-9, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27221203

RESUMO

This review provides an overview of volatile organic compounds (VOCs) which are considered lung cancer biomarkers for diagnostic breath analysis. It includes results of scientific publications from 1985 to 2015. The identified VOCs are listed and ranked according to their occurrence of nomination. The applied detection and sampling methods are specified but not evaluated. Possible reasons for the different results of the studies are stated. Among the most frequently emerging biomarkers are 2-butanone and 1-propanol as well as isoprene, ethylbenzene, styrene and hexanal. The outcome of this review may be helpful for the development of a lung cancer screening device.


Assuntos
Biomarcadores Tumorais/análise , Testes Respiratórios , Neoplasias Pulmonares/diagnóstico , Compostos Orgânicos Voláteis/análise , Humanos , Respiração
10.
Appl Opt ; 48(4): B80-6, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19183586

RESUMO

High detection selectivity is extremely important for gas analyzers in order to correctly identify the measured compound. Therefore, laser-based systems require a high optical resolution, which primarily depends on the spectral linewidth of the radiation source. This study examines the effective linewidth (chirp) of a pulsed distributed feedback (DFB) quantum cascade laser (QCL) in a photoacoustic (PA) gas detection system. The influence of the QCL operating parameters pulse duration and pulse current as well as the impact of the modulation technique are investigated. Effective QCL linewidths for pulse gate modulation, pulse frequency modulation, and chopper modulation are compared. The investigations are performed by measuring the PA spectra of nitrogen monoxide absorption lines. The results prove the strong influence of pulse duration and pulse current. They also demonstrate that the modulation technique has a considerable influence and, consequently, affects the detection selectivity of the PA analyzer. The aim of this research is to determine optimum operational parameters for high resolution PA spectroscopy.

11.
Appl Opt ; 46(7): 1120-5, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17304310

RESUMO

A procedure for the numerical calculation of photoacoustic signals is introduced. It is based on the finite element method and uses an expansion of the signal into acoustic eigenmodes of the measuring cell. Loss is included by the incorporation of quality factors. Surface and volume loss effects attributable to viscosity and thermal conductivity are considered. The method is verified for cylindrical cells with excellent accordance. The application to photoacoustic cells of unconventional shape yields good agreement with experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...